skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Charles, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fungus weevils (family Anthribidae) are morphologically and ecologically diverse, with highly varied feeding habits, mainly mycetophagy but also phytophagy, palynophagy and entomophagy. The phylogeny of the family is virtually unexplored, its evolutionary history obscure; thus, the existing classification is controversial and likely artificial. We generated the first multi‐gene higher‐level phylogeny estimate of Anthribidae using DNA data from 400 nuclear genes obtained via anchored hybrid enrichment from 40 species representing 17 tribes plus generaincertae sedis. As in previous studies, the family Anthribidae was consistently recovered as the sister group of Nemonychidae. We recovered two main clades in Anthribidae as sister groups with strong statistical support, viz. a monophyletic subfamily Urodontinae and the traditionally recognized Anthribinae, which was rendered paraphyletic by the subfamily Choraginae. Paraphyly and polyphyly among tribes of Anthribinae indicate that current tribal concepts—all based on morphology and without phylogenetic analysis—are artificial. Based on our results, we subsume the subfamily Choraginae into Anthribinae and place its six current tribes (Apolectini, Araecerini, Choragini, Cisanthribini, Valenfriesiini and Xenorchestini) in an expanded subfamily Anthribinae. We also transfer three genera currently treated as Anthribinaeincertae sedisto three generally recognized tribes, namelyPleosporiusHolloway to Sintorini,XylanthribusKuschel to Proscoporhinini andAnthribidusFåhraeus to Platystomini. The phylogenetic positions of Urodontinae and Trigonorhinini suggest that phytophagy is the ancestral feeding mode of Anthribidae, with a few taxa of Anthribinae having secondarily evolved plant‐feeding from mycetophagy, the predominant feeding habit of the subfamily. Overall, our results provide the first molecular phylogenetic context for research on Anthribidae and a first step towards reconstructing a natural tribal classification of the Anthribinae. Our study highlights the need for a phylogenetic approach, sampling of type genera and deeper taxon sampling to identify natural tribal‐level groupings. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026
  2. Abstract Air pollution has posed health and environmental threats since the Industrial Revolution. Technological solutions present major expenses for industry, yet nature's ecosystems also provide pollution uptake. In the pursuit of techno‐ecological sustainable design, this work presents a framework for spatially‐explicit industrial site design that determines where and when ecological restoration should be considered. The framework considers land use changes and identifies the cheapest balance between technological and ecological uptake for industrial landscapes, including the impacts of long term ecological growth dynamics. This work presents the framework's construction along with a case study conducted for a coal‐fired power station in Ohio. The results provide spatial maps of proposed restoration areas, projected savings values, and spatial‐temporal maps that consider annual budget constraints. The results demonstrate a significant sensitivity to land use restoration costs and highlights ecological advantages, like simultaneous uptake of different chemical species. 
    more » « less